

NAG C Library Function Document

nag_1d_quad_inf_1 (d01smc)

1 Purpose

nag_1d_quad_inf_1 (d01smc) calculates an approximation to the integral of a function $f(x)$ over an infinite or semi-infinite interval $[a, b]$:

$$I = \int_a^b f(x) dx.$$

2 Specification

```
#include <nag.h>
#include <nagd01.h>

void nag_1d_quad_inf_1 (double (*f)(double x, Nag_User *comm),
                        Nag_BoundInterval boundinf, double bound, double epsabs,
                        double epsrel, Integer max_num_subint, double *result,
                        double *abserr, NAG_QuadProgress *qp, Nag_User *comm, NagError *fail)
```

3 Description

This function is based on the QUADPACK routine QAGI (Piessens *et al.* (1983)). The entire infinite integration range is first transformed to $[0, 1]$ using one of the identities

$$\int_{-\infty}^a f(x) dx = \int_0^1 f\left(a - \frac{1-t}{t}\right) \frac{1}{t^2} dt$$

$$\int_a^{\infty} f(x) dx = \int_0^1 f\left(a + \frac{1-t}{t}\right) \frac{1}{t^2} dt$$

$$\int_{-\infty}^{\infty} f(x) dx = \int_0^{\infty} (f(x) + f(-x)) dx = \int_0^1 \left[f\left(\frac{1-t}{t}\right) + f\left(\frac{-1+t}{t}\right) \right] \frac{1}{t^2} dt$$

where a represents a finite integration limit. An adaptive procedure, based on the Gauss 7-point and Kronrod 15-point rules, is then employed on the transformed integral. The algorithm, described by De Doncker (1978), incorporates a global acceptance criterion (as defined by Malcolm and Simpson (1976)) together with the ϵ -algorithm (Wynn (1956)) to perform extrapolation. The local error estimation is described by Piessens *et al.* (1983).

4 Parameters

1: **f** – function supplied by user *Function*

The function **f**, supplied by the user, must return the value of the integrand f at a given point.

The specification of **f** is:

```
double f(double x, Nag_User *comm)
```

1: **x** – double *Input*

On entry: the point at which the integrand f must be evaluated.

2: **comm** – Nag_User *

On entry/on exit: pointer to a structure of type Nag_User with the following member:

p – Pointer

Input/Output

On entry/on exit: the pointer **comm**–**p** should be cast to the required type, e.g., `struct user *s = (struct user *)comm->p`, to obtain the original object's address with appropriate type. (See the argument **comm** below.)

2: **boundinf** – Nag_BoundInterval

Input

On entry: indicates the kind of integration interval:

if **boundinf** = Nag_UpperSemiInfinite, the interval is [**bound**, $+\infty$);

if **boundinf** = Nag_LowerSemiInfinite, the interval is ($-\infty$, **bound**];

if **boundinf** = Nag_Infinite, the interval is ($-\infty$, $+\infty$).

Constraint: **boundinf** = Nag_UpperSemiInfinite, Nag_LowerSemiInfinite, or Nag_Infinite.

3: **bound** – double

Input

On entry: the finite limit of the integration interval (if present). **bound** is not used if **boundinf** = Nag_Infinite.

4: **epsabs** – double

Input

On entry: the absolute accuracy required. If **epsabs** is negative, the absolute value is used. See Section 6.1.

5: **epsrel** – double

Input

On entry: the relative accuracy required. If **epsrel** is negative, the absolute value is used. See Section 6.1.

6: **max_num_subint** – Integer

Input

On entry: the upper bound on the number of sub-intervals into which the interval of integration may be divided by the function. The more difficult the integrand, the larger **max_num_subint** should be.

Suggested values: a value in the range 200 to 500 is adequate for most problems.

Constraint: **max_num_subint** ≥ 1 .

7: **result** – double *

Output

On exit: the approximation to the integral I .

8: **abserr** – double *

Output

On exit: an estimate of the modulus of the absolute error, which should be an upper bound for $|I - \text{result}|$.

9: **qp** – Nag_QuadProgress *

Pointer to structure of type Nag_QuadProgress with the following members:

num_subint – Integer

Output

On exit: the actual number of sub-intervals used.

fun_count – Integer

Output

On exit: the number of function evaluations performed by nag_1d_quad_inf_1.

sub_int_beg_pts – double *	<i>Output</i>
sub_int_end_pts – double *	<i>Output</i>
sub_int_result – double *	<i>Output</i>
sub_int_error – double *	<i>Output</i>

On exit: these pointers are allocated memory internally with **max_num_subint** elements. If an error exit other than **NE_INT_ARG_LT**, **NE_BAD_PARAM** or **NE_ALLOC_FAIL** occurs, these arrays will contain information which may be useful. For details, see Section 6.

Before a subsequent call to **nag_1d_quad_inf_1** is made, or when the information contained in these arrays is no longer useful, the user should free the storage allocated by these pointers using the NAG macro **NAG_FREE**.

10: **comm** – Nag_User *

On entry/on exit: pointer to a structure of type **Nag_User** with the following member:

p – Pointer	<i>Input/Output</i>
--------------------	---------------------

On entry/on exit: the pointer **p**, of type **Pointer**, allows the user to communicate information to and from the user-defined function **f()**. An object of the required type should be declared by the user, e.g., a structure, and its address assigned to the pointer **p** by means of a cast to **Pointer** in the calling program, e.g., **comm.p = (Pointer)&s**. The type **Pointer** is **void ***.

11: **fail** – NagError *

Input/Output

The NAG error parameter (see the Essential Introduction).

Users are recommended to declare and initialise **fail** and set **fail.print = TRUE** for this function.

5 Error Indicators and Warnings

NE_INT_ARG_LT

On entry, **max_num_subint** must not be less than 1: **max_num_subint = <value>**.

NE_BAD_PARAM

On entry, parameter **boundinf** had an illegal value.

NE_ALLOC_FAIL

Memory allocation failed.

NE_QUAD_MAX_SUBDIV

The maximum number of subdivisions has been reached: **max_num_subint = <value>**.

The maximum number of subdivisions has been reached without the accuracy requirements being achieved. Look at the integrand in order to determine the integration difficulties. If the position of a local difficulty within the interval can be determined (e.g., a singularity of the integrand or its derivative, a peak, a discontinuity, etc.) you will probably gain from splitting up the interval at this point and calling the integrator on the sub-intervals. If necessary, another integrator, which is designed for handling the type of difficulty involved, must be used. Alternatively, consider relaxing the accuracy requirements specified by **epsabs** and **epsrel**, or increasing the value of **max_num_subint**.

NE_QUAD_ROUNDOFF_TOL

Round-off error prevents the requested tolerance from being achieved: **epsabs = <value>**, **epsrel = <value>**.

The error may be underestimated. Consider relaxing the accuracy requirements specified by **epsabs** and **epsrel**.

NE_QUAD_BAD_SUBDIV

Extremely bad integrand behaviour occurs around the sub-interval ($<\text{value}>$, $<\text{value}>$).

The same advice applies as in the case of **NE_QUAD_MAX_SUBDIV**.

NE_QUAD_ROUNDOFF_EXTRAPL

Round-off error is detected during extrapolation.

The requested tolerance cannot be achieved, because the extrapolation does not increase the accuracy satisfactorily; the returned result is the best that can be obtained.

The same advice applies as in the case of **NE_QUAD_MAX_SUBDIV**.

NE_QUAD_NO_CONV

The integral is probably divergent or slowly convergent.

Please note that divergence can also occur with any error exit other than **NE_INT_ARG_LT**, **NE_BAD_PARAM** or **NE_ALLOC_FAIL**.

NE_QUAD_BAD_SUBDIV_INTS

Extremely bad integrand behaviour occurs around one of the sub-intervals ($<\text{value}>$, $<\text{value}>$) or ($<\text{value}>$, $<\text{value}>$).

The same advice applies as in the case of **NE_QUAD_MAX_SUBDIV**.

6 Further Comments

The time taken by `nag_1d_quad_inf_1` depends on the integrand and the accuracy required.

If the function fails with an error exit other than **NE_INT_ARG_LT**, **NE_BAD_PARAM** or **NE_ALLOC_FAIL** then the user may wish to examine the contents of the structure `qp`. These contain the end-points of the sub-intervals used by `nag_1d_quad_inf_1` along with the integral contributions and error estimates over the sub-intervals.

Specifically, for $i = 1, 2, \dots, n$, let r_i denote the approximation to the value of the integral over the sub-interval $[a_i, b_i]$ in the partition of $[a, b]$ and e_i be the corresponding absolute error estimate.

Then, $\int_{a_i}^{b_i} f(x) dx \simeq r_i$ and $\text{result} = \sum_{i=1}^n r_i$ unless the function terminates while testing for divergence of the integral (see Section 3.4.3 of Piessens *et al.* (1983)). In this case, `result` (and `abserr`) are taken to be the values returned from the extrapolation process. The value of n is returned in `num_subint`, and the values a_i , b_i , r_i and e_i are stored in the structure `qp` as

```
ai = sub_int_beg_pts[i - 1],  
bi = sub_int_end_pts[i - 1],  
ri = sub_int_result[i - 1] and  
ei = sub_int_error[i - 1].
```

6.1 Accuracy

The function cannot guarantee, but in practice usually achieves, the following accuracy:

$$|I - \text{result}| \leq tol$$

where

$$tol = \max\{|\text{epsabs}|, |\text{epsrel}| \times |I|\}$$

and `epsabs` and `epsrel` are user-specified absolute and relative error tolerances. Moreover it returns the quantity `abserr` which, in normal circumstances, satisfies

$$|I - \text{result}| \leq \text{abserr} \leq tol.$$

6.2 References

De Doncker E (1978) An adaptive extrapolation algorithm for automatic integration *ACM SIGNUM Newslett.* **13 (2)** 12–18

Malcolm M A and Simpson R B (1976) Local versus global strategies for adaptive quadrature *ACM Trans. Math. Software* **1** 129–146

Piessens R, De Doncker-Kapenga E, Überhuber C and Kahaner D (1983) *QUADPACK, A Subroutine Package for Automatic Integration* Springer-Verlag

Wynn P (1956) On a device for computing the $e_m(S_n)$ transformation *Math. Tables Aids Comput.* **10** 91–96

7 See Also

nag_1d_quad_gen_1 (d01sjc)

8 Example

To compute

$$\int_0^\infty \frac{1}{(x+1)\sqrt{x}} dx.$$

8.1 Program Text

```
/* nag_1d_quad_inf_1(d01smc) Example Program
*
* Copyright 1998 Numerical Algorithms Group.
*
* Mark 5, 1998.
*
* Mark 6 revised, 2000.
*/
#include <nag.h>
#include <stdio.h>
#include <nag_stdlb.h>
#include <math.h>
#include <nagd01.h>

static double f(double x, Nag_User *comm);

main()
{
    double a;
    double epsabs, abserr, epsrel, result;
    Nag_QuadProgress qp;
    Integer max_num_subint;
    static NagError fail;
    Nag_User comm;

    Vprintf("d01smc Example Program Results\n");
    epsabs = 0.0;
    epsrel = 0.0001;
    a = 0.0;
    max_num_subint = 200;

    d01smc(f, Nag_UpperSemiInfinite, a, epsabs, epsrel, max_num_subint,
```

```

    &result, &abserr, &qp, &comm, &fail);

Vprintf("a      - lower limit of integration = %10.4f\n", a);
Vprintf("b      - upper limit of integration = infinity\n");
Vprintf("epsabs - absolute accuracy requested = %9.2e\n", epsabs);
Vprintf("epsrel - relative accuracy requested = %9.2e\n\n", epsrel);
if (fail.code != NE_NOERROR)
    Vprintf("%s\n", fail.message);
if (fail.code != NE_INT_ARG_LT && fail.code != NE_BAD_PARAM &&
    fail.code != NE_ALLOC_FAIL)
{
    Vprintf("result - approximation to the integral = %9.5f\n", result);
    Vprintf("abserr - estimate of the absolute error = %9.2e\n", abserr);
    Vprintf("qp.fun_count - number of function evaluations = %4ld\n",
           qp.fun_count);
    Vprintf("qp.num_subint - number of subintervals used = %4ld\n",
           qp.num_subint);
    /* Free memory used by qp */
    NAG_FREE(qp.sub_int_beg_pts);
    NAG_FREE(qp.sub_int_end_pts);
    NAG_FREE(qp.sub_int_result);
    NAG_FREE(qp.sub_int_error);
    exit(EXIT_SUCCESS);
}
exit(EXIT_FAILURE);
}

static double f(double x, Nag_User *comm)
{
    return 1.0/((x+1.0)*sqrt(x));
}

```

8.2 Program Data

None.

8.3 Program Results

```

d01smc Example Program Results
a      - lower limit of integration = 0.0000
b      - upper limit of integration = infinity
epsabs - absolute accuracy requested = 0.00e+00
epsrel - relative accuracy requested = 1.00e-04

result - approximation to the integral = 3.14159
abserr - estimate of the absolute error = 2.65e-05
qp.fun_count - number of function evaluations = 285
qp.num_subint - number of subintervals used = 10

```
